Efficient Numerical Methods for Fractional Laplacian and time fractional PDEs

Jie Shen

Purdue University

Collaborators: Sheng Chen and Changtao Sheng
ICERM Workshop on Fractional PDEs, June 18-22, 2018

Two main difficulties with fractional PDEs:

- fractional derivatives are non-local operators which are much more difficult and expensive to deal with than local operators.
- fractional PDEs have weakly singularities at $t=0$ and/or boundaries.

The following two situations will be considered:

- Part I. Solving the fractional Laplacian using the Caffarelli-Silverstre extension
- Part II. Space-time Petrov-Galerkin method for time-fractional diffusion equations

We consider the fractional Laplacian equation in a bounded domain Ω :

$$
\left\{\begin{array}{l}
(-\Delta)^{s} u(\mathbf{x})=f(\mathbf{x}), \quad \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \Omega \\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where $0<s<1$, and the fractional Laplacian operator is defined through the spectral decomposition of Laplace operator.
Two review papers:
What is the fractional Laplacian? by Liscke et al.
Numerical methods for fractional diffusion, by Bonito et al.
Three approaches:

- Using the discrete eigenfunctions of the Laplacian
- Using the Dunford-Taylor formula

$$
u=(-\Delta)^{-s} f=\frac{\sin s \pi}{\pi} \int_{0}^{\infty} \mu^{-s}(\mu I-\Delta)^{-1} f d \mu
$$

- Using the Caffarelli-Silvestre extension (cf. Stinga \& Torrea '10)

Caffarelli-Silvestre extension

To overcome the difficulty associated with non-local operators, Caffarelli-Silvestre '07 (see Stinga \& Torrea '10 for the bounded case) introduced an extension problem in $d+1$ dimension with local differential operators:

$$
\begin{cases}\nabla \cdot\left(y^{\alpha} \nabla U(\mathbf{x}, y)\right)=0, & \text { in } \mathcal{D}=\Omega \times(0, \infty) \\ U(\mathbf{x}, y)=0, & \text { on } \partial_{L} \mathcal{D}=\partial \Omega \times[0, \\ \lim _{y \rightarrow 0} y^{\alpha} U_{y}(\mathbf{x}, y)=-d_{s} f(\mathbf{x}), & \lim _{y \rightarrow \infty} U(\mathbf{x}, y)=0\end{cases}
$$

where $\alpha=1-2 s$ and $d_{s}=2^{1-2 s} \Gamma(1-s) / \Gamma(s)$. Then, the solution of the fractional Laplacian equation can be expressed as

$$
u(x)=U(x, 0)
$$

Hence, one only needs to solve the above $d+1$ dimensional problems with local differential operators.

Results by using finite elements

Nochetto, Otarola \& Salgado (2016) made a systematical study of the finite element approximation to the extension problem.

Fig. 2 Computational rate of convergence $\#\left(\mathscr{T}_{y}\right)^{-s /(n+1)}$ for quasi-uniform meshes \mathscr{T}_{9}, with $s=0.2$ and $n=1$

Figure: Q_{1} FEM convergence rate of the quasi-uniform mesh (in y), Nochetto et al 2016.

Improved convergence rate with a graded mesh (in y)

Fig. 3 Computational rate of convergence for approximate solution of the fractional Laplacian over a square with graded meshes on the extended dimension. Left panel: rate for $s=0.2$; right panel: rate for $s=0.8$. In both cases, the rate is $\approx\left(\# \mathscr{T}_{श_{k}}\right)^{-1 / 3}$, in agreement with Theorem 5.4 and Remark 5.5
Q. Can we further improve the convergence rate in the extended direction?

Galerkin approximation with Laguerre spectral method in y

The particular weight function y^{α} in the extension problem calls for the use of generalized Laguerre polynomials $\left\{\mathcal{L}_{k}^{\alpha}(y)\right\}$ which are mutually orthogonal w.r.t. the weight $y^{\alpha} e^{-y / 2}$.
Let us denote

$$
Y_{N}^{\alpha}=\operatorname{span}\left\{\hat{\mathcal{L}}_{k}^{\alpha}(y):=\mathcal{L}_{k}^{\alpha}(y) e^{-y / 2}, k=0,1, \cdots, N\right\}
$$

For the \mathbf{x}-directions, one can use your favorite approximation space X_{K}, e.g., FEM or spectral method.
The Galerkin approximation for the extension problem is to find $u_{N K} \in X_{N, K}=Y_{N}^{\alpha} \times X_{K}$ such that

$$
\left(y^{\alpha} \nabla u_{N K}, \nabla v\right)_{D}=d_{s}(f, v(x, 0))_{\Omega}, \forall v \in X_{N, K}
$$

- Let $\left\{\psi_{j}(x)\right\}_{1 \leq j \leq K}$ be a set of basis functions in X_{K}, we write $u_{N K}=\sum_{k=1}^{N} \sum_{j=1}^{K} \tilde{u}_{k j} \phi_{k}(y) \psi_{j}(x)$ and $U=\left(\tilde{u}_{k j}\right)$.
- Let us denote

$$
\begin{array}{ll}
S_{k j}^{y}=\left(y^{\alpha} \phi_{j}^{\prime}(y), \phi_{k}^{\prime}(y)\right)_{(0, \infty)}, & M_{k j}^{y}=\left(y^{\alpha} \phi_{j}(y), \phi_{k}(y)\right)_{(0, \infty)}, \\
S_{k j}^{x}=\left(\nabla_{x} \psi_{j}(x), \nabla_{x} \psi_{k}(x)\right)_{\Omega}, & M_{k j}^{x}=\left(\psi_{j}(x), \psi_{k}(x)\right)_{\Omega} .
\end{array}
$$

Then, the linear system for the Galerkin approximation is

$$
S^{y} U M^{x}+M^{y} U S^{x}=F
$$

- Choice of basis functions for Y_{N}^{α} :

Let $\mathcal{L}_{-1}^{\alpha}(y)=0$, we set $\left.\phi_{k}(y):=\hat{\mathcal{L}}_{k-1}^{\alpha} y\right)-\hat{\mathcal{L}}_{k}^{\alpha}(y)$. Then $Y_{N}^{\alpha}=\operatorname{span}\left\{\phi_{k}(y): k=0,1, \cdots, N\right\}$. and we have

$$
\left.\partial_{y} \phi_{k}(y)=\frac{1}{2}\left(\hat{\mathcal{L}}_{k-1}^{\alpha} y\right)+\hat{\mathcal{L}}_{k}^{\alpha}(y)\right) .
$$

Thanks to the orthogonality of generalized Laguerre functions, M^{y} and S^{y} are both symmetric penta-diagonal.

The above linear system can be solved efficiently by using the matrix-diagonalization method.

Let $S^{y} E=M^{y} E \Lambda$ where (E, Λ) consists of eigenvectors and eigenvalues of $S^{y} \bar{x}=\lambda M^{y} \bar{x}$.

Setting the change of variable $U=E V$, we can reduce the matrix system to a sequence of N problems in x-direction:

$$
\left(\lambda_{j} M^{\times}+S^{\times}\right) \bar{v}_{j}=\left(E^{t}\left(M^{y}\right)^{-1} F\right)_{j}, \quad j=1,2, \cdots, N .
$$

Since usually $N \ll K$, this procedure is very efficient, and is not intrusive as your favorite elliptic solver can be used.

Error estimates for the Laguerre spectral methods

- Error estimates with generalized Laguerre functions:

$$
\min _{v_{N} \in Y_{N}^{\alpha}}\left\|\hat{\partial}_{y}^{\prime}\left(u-v_{N}\right)\right\|_{y^{\alpha+1}} \lesssim N^{(I-m) / 2}\left\|\hat{\partial}_{y}^{m} u\right\|_{y^{\alpha+m}}, 0 \leq I \leq m
$$

$$
\text { where } \hat{\partial}_{y}=\left(\partial_{y}+1 / 2\right)
$$

- Then for the problem

$$
-\partial_{y}\left(y^{\alpha} \partial_{y} u\right)=f, \quad u(0)=0, \lim _{y \rightarrow \infty} u(y)=0
$$

the generalized Laguerre-Galerkin method in Y_{N}^{α} leads to:

$$
\left\|\left(u-u_{N}\right)_{y}\right\|_{y^{\alpha}} \lesssim N^{(1-m) / 2}\left\|\hat{\partial}_{y}^{m} u\right\|_{y^{\alpha+m-1}}
$$

Error estimates for the extension problem

- The error estimate for Galerkin approximation of the extension problem in $X_{N, K}$ is:

$$
\begin{aligned}
\left\|U-U_{N K}\right\|_{1, y^{\alpha}} & \lesssim N^{(1-m) / 2}\left\|\hat{\partial}_{y}^{m} U\right\|_{y^{\alpha+m-1}} \\
& +\min _{v_{K} \in X_{K}}\left\|\nabla_{x}\left(U(x, 0)-v_{K}\right)\right\|
\end{aligned}
$$

The first part is a typical result for spectral approximation.

- Unfortunately, the solution is singular at $y=0$ so that $\left\|\hat{\partial}_{y}^{m} u\right\|_{y^{\alpha+m-1}}$ is only bounded for $m=[2 s]+1$. So the Laguerre spectral method converges very slowly in the y-direction.
L^{2} Error

Figure: $\lambda=2, s=0.5,0.31,0.82$.

Form of singularities at $t=0$

A careful look at the extension problem reveals that the singularity can be explicitly identified so it is possible to use special basic functions to well represent the singular behavior at $y=0$.
By using a separation of variables approach, one finds that the solution to the extension problem can be expressed as

$$
U(\mathbf{x}, y)=\sum_{n=1}^{\infty} \widetilde{U}_{n} \varphi_{n}(\mathbf{x}) \psi_{n}(y)
$$

where $\psi_{n}(y)$ is the solution of (Stinga \& Torrea '10)

$$
\left\{\begin{array}{l}
-\psi_{n}^{\prime \prime}(y)-\frac{1-2 s}{y} \psi_{n}^{\prime}(y)+\lambda_{n} \psi_{n}(y)=0, \quad y \in \Lambda=(0, \infty) \\
\psi_{n}(0)=1, \quad \lim _{y \rightarrow \infty} \psi_{n}(y)=0
\end{array}\right.
$$

which can be expressed by Bessel function of the 2nd kind $K_{s}(z)$:

$$
\psi_{n}(y)=c_{s}\left(\sqrt{\lambda_{n}} y\right)^{s} K_{s}\left(\sqrt{\lambda_{n}} y\right), \quad c_{s}=2^{1-s} / \Gamma(s)
$$

Form of singularities at $t=0$: continued

We have

$$
K_{s}(z):=\frac{s}{2} \frac{I_{-s}(z)-I_{s}(z)}{\sin (s \pi)}, \quad I_{s}(z):=\sum_{j=0}^{\infty} \frac{1}{j!\Gamma(j+1+\alpha)}\left(\frac{z}{2}\right)^{2 j+s} .
$$

So we can derive

$$
\begin{aligned}
\psi_{n}(y) & =c_{s}\left(\sqrt{\lambda_{n}} y\right)^{s} K_{s}\left(\sqrt{\lambda_{n}} y\right) \\
& =\frac{s c_{s}}{2 \sin (s \pi)}\left\{\left(\sqrt{\lambda_{n}} y\right)^{s} I_{-s}\left(\sqrt{\lambda_{n}} y\right)-\left(\sqrt{\lambda_{n}} y\right)^{s} I_{s}\left(\sqrt{\lambda_{n}} y\right)\right\} \\
& =\frac{s c_{s}}{2 \sin (s \pi)} \sum_{j=0}^{\infty} \frac{\left(\sqrt{\lambda_{n}} y\right)^{2 j}-\left(\sqrt{\lambda_{n}} y\right)^{2 j+2 s}}{2^{2 j+s} j!\Gamma(j+2-2 s)} \\
& =g_{1, n}(y)+y^{2 s} g_{2, n}(y),
\end{aligned}
$$

where $g_{1, n}(y), g_{2, n}(y)$ are smooth functions.

Enriched spectral method

It is natural to add some some singular parts to the approximation space in the y-direction:

$$
Y_{N}^{\alpha, k}=Y_{N}^{\alpha} \oplus\left\{y^{2 s} \hat{\mathcal{L}}_{j}^{\alpha}(y): j=0,1, \cdots, k\right\}
$$

and the new approximation space for the extension problem is:

$$
X_{N, K}^{k}=Y_{N}^{\alpha, k} \times X_{K}
$$

We have the following error estimate with the new approximation space:

$$
\left\|u-U_{N K}^{k}(x, 0)\right\|_{H^{s}(\Omega)} \lesssim N^{-\frac{[2 s]}{2}-k}+\min _{v_{K} \in X_{K}}\left\|\nabla\left(u-v_{K}\right)\right\| .
$$

Solution of the linear system

One can apply the same matrix diagonalization process as before, but (S^{y}, M^{y}) are usually severely ill conditioned since the added singular functions are "similar at $y=0$ " and have no orthogonal relation with the Laguerre functions. This approach can only be used for small k (which is usually enough).

Figure: Error behaviors with the enriched spectral method (1-D): $\mathrm{s}=0.2$

Figure: Smooth solution with a spectral method in $\Omega=(-1,1)^{2}$: Left: $s=0.2, \quad$ Right: $s=0.8$.

Figure: Non-smooth solution with a finite element method in $\Omega=(-1,1)$: Left: $f(x)=1, s=0.2, \quad$ Right: $f(x)=\left(1-x^{2}\right), s=0.7$.

Part II. Space-time Petrov-Galerkin method

We consider the following class of fractional PDEs $(0<\alpha<1)$:
${ }_{0}^{C} D_{t}^{\alpha} v(x, t)+\mathcal{L} v(x, t)+\mathcal{N}(v(x, t))=0, \quad \forall(x, t) \in \mathbb{D}:=\Omega \times(0, T]$,
with suitable boundary conditions and initial condition, where \mathcal{L} is a linear elliptic operator, \mathcal{N} is a lower-order nonlinear operator, and ${ }_{0}^{C} D_{t}^{\alpha}(0<\alpha<1)$ is the left-sided Caputo fractional derivative of order α.
We can reformulate the above problem using the Riemann-Liouville derivative with homogeneous initial condition:

$$
{ }_{0} D_{t}^{\alpha} u(x, t)+\mathcal{L} u(x, t)+\mathcal{N}(u(x, t))=g(x, t), \quad v(x, 0)=0 .
$$

Two main difficulties in dealing with time-fractional PDEs:

- Solution at the next time step depends on solutions at all previous time steps.
- The solution is weakly singular at $t=0$ so a usual approach will not lead to high accuracy.
Some existing approaches:
- Finite-difference methods with graded meshes at $t=0$.
- Convolution integrals (Lubich '86, ...).
- Spectral-element method with geometric mesh leads exponential convergence (Mao \& S. '17), but it is expensive and complicated.
- Space-time spectral methods:
- using usual polynomials (Li \& Xu '10) and Müntz polynomials (Hou \& Xu '17);
- using poly-fractonomials or generalized Jacobi functions (Karniadakis \& Zayernouri '15, Chen, S. \& Wang, '16, Mao \& S. '16).

We first consider the linear equations with $\mathcal{N}=0$:

$$
{ }_{0} D_{t}^{\alpha} u(x, t)+\mathcal{L} u(x, t)=g(x, t) ; \quad u(x, 0)=0 .
$$

Petrov-Galerkin formulation: Find $u \in H_{0}^{\alpha}(I) \otimes H_{\mathcal{L}}(\Omega)$ s.t.
$\mathcal{A}(u, v):=\left({ }_{0} D_{t}^{\alpha} u, v\right)_{\mathbb{D}}+\left(\mathcal{L}^{\frac{1}{2}} u, \mathcal{L}^{\frac{1}{2}} v\right)_{\mathbb{D}}=(g, v)_{\mathbb{D}}, \quad \forall v \in L^{2}(I) \otimes H_{\mathcal{L}}(\Omega)$,
where $H_{\mathcal{L}}(\Omega)=\left\{u \in L^{2}(\Omega):\left(\mathcal{L}^{\frac{1}{2}} u, \mathcal{L}^{\frac{1}{2}} u\right)<\infty\right\}$.
The Petrov-Galerkin formulation is well-posed since

$$
\begin{aligned}
& \mathcal{A}\left(u,{ }_{0} D_{t}^{\alpha} u\right)=\left\|_{0} D_{t}^{\alpha} u\right\|_{L^{2}(\mathbb{D})}^{2}+\left(\mathcal{L}^{\frac{1}{2}} u,{ }_{0} D_{t}^{\alpha} \mathcal{L}^{\frac{1}{2}} u\right)_{\mathbb{D}} \\
& \geq\left\|_{0} D_{t}^{\alpha} u\right\|_{L^{2}(\mathbb{D})}^{2}+C_{2}\left(D_{t}^{\frac{\alpha}{2}} \mathcal{L}^{\frac{1}{2}} u,{ }_{t} D_{T}^{\frac{\alpha}{2}} \mathcal{L}^{\frac{1}{2}} u\right)_{\mathbb{D}} \\
& =\left\|_{0} D_{t}^{\alpha} u\right\|_{L^{2}(\mathbb{D})}^{2}+C_{2} \cos \left(\frac{\pi \alpha}{2}\right)\left\|_{0} D_{t}^{\frac{\alpha}{2}} u\right\|_{L^{2}\left(I, H_{\mathcal{L}}(\Omega)\right)}^{2} \\
& \geq C_{3}\left(\left\|_{0} D_{t}^{\alpha} u\right\|_{L^{2}(\mathbb{D})}^{2}+\left\|_{0} D_{t}^{\alpha} u\right\|_{L^{2}\left(I, H_{\mathcal{L}}(\Omega)\right)}^{2}\right):=C_{3}\|u\|_{B^{\alpha}(\mathbb{D})}^{2} .
\end{aligned}
$$

Basis functions in time: using generalized Jacobi functions

We define shifted generalized Jacobi functions (or poly-fractonomials, Karniadakis \& Zayernouri '13)

$$
J_{n}^{(\alpha, \eta)}(t)=t^{\eta} \widetilde{P}_{n}^{(\alpha, \eta)}(t), \quad t \in I, \quad n \geq 0,
$$

where $\widetilde{P}_{n}^{(\alpha, \eta)}(t)=P_{n}^{(\alpha, \eta)}\left(\frac{2 t-T}{T}\right)$ is the shifted Jacobi polynomial.
It satisfies the following remarkable property:

$$
{ }_{0} D_{t}^{\alpha} J_{n}^{(-\alpha, \alpha)}(t)=\frac{\Gamma(n+\alpha+1)}{n!} \widetilde{P}_{n}^{(0,0)}(t) .
$$

So we define our approximation space in time by

$$
\begin{aligned}
\mathcal{F}_{N}^{(\alpha)} & :=\left\{t^{\alpha} \psi(t): \psi(t) \in \mathcal{P}_{N}\right\} \\
& =\operatorname{span}\left\{J_{n}^{(-\alpha, \alpha)}(t)=t^{\alpha} \widetilde{P}_{n}^{(-\alpha, \alpha)}(t): 0 \leq n \leq N\right\}
\end{aligned}
$$

which incorporates the homogeneous boundary conditions at $t=0$.

Space-time Petrov-Galerkin method

Let V_{h} be a finite-dimensional approximation space of $V=H_{\mathcal{L}}(\Omega)$:

$$
V_{h}=\operatorname{span}\left\{\phi_{1}, \phi_{2}, \cdots, \phi_{M}\right\}
$$

Then, our Petrov-Galerkin method is: Find $u_{L} \in V_{h} \otimes \mathcal{F}_{N}^{(\alpha)}$, such that

$$
\mathcal{A}\left(u_{L}, v_{L}\right)=\left(g, v_{L}\right)_{\mathbb{D}}, \quad \forall v_{L} \in V_{h} \otimes \mathcal{P}_{N}
$$

Q. The above linear system is of size $L=M N$. How to solve it efficiently?
A. Since the domain \mathbb{D} is a (separable) tensor product domain, we can employ a discrete separation of variables.

We write $u_{L}(x, t)=\sum_{m=1}^{M} \sum_{n=0}^{N} \widetilde{u}_{m n} \phi_{m}(x) J_{n}^{(-\alpha, \alpha)}(t)$, and denote

$$
\begin{aligned}
& f_{m n}=\left(f, \phi_{m}(x) L_{n}^{(\alpha)}(t)\right)_{\Omega}, \quad F=\left(f_{m n}\right), \quad U=\left(\widetilde{u}_{m n}^{h}\right) \\
& s_{p q}^{t}=\int_{I} D_{t}^{\alpha} J_{q}^{(-\alpha, \alpha)}(t) L_{p}(t) d t, \quad m_{p q}^{t}=\int_{I} J_{q}^{(-\alpha, \alpha)}(t) L_{p}(t) d t \\
& s_{p q}^{h}=\int_{\Omega} \mathcal{L}^{\frac{1}{2}} \phi_{q} \mathcal{L}^{\frac{1}{2}} \phi_{p} d x, \quad m_{p q}^{h}=\int_{\Omega} \phi_{q} \phi_{p} d x \\
& S^{t}=\left(s_{p q}^{t}\right), \quad M^{t}=\left(m_{p q}^{t}\right), \quad S^{h}=\left(s_{p q}^{h}\right), \quad M^{h}=\left(m_{p q}^{h}\right)
\end{aligned}
$$

Then, we have

$$
M^{h} U\left(S^{t}\right)^{T}+S^{h} U\left(M^{t}\right)^{T}=F
$$

Note that $S^{t}=\mathbf{I}$, but M^{t} is full and non-symmetric.

Usual approach: diagonalization with eigen-decomposition

Let $E:=\left(\bar{e}_{0}, \cdots, \bar{e}_{N}\right)$ be the matrix formed by the orthonormal eigenvectors of the generalized eigenvalue problem $M^{t} \bar{e}_{j}=\lambda_{j} S^{t} \bar{e}_{j}$ and $\Lambda=\operatorname{diag}\left(\lambda_{0}, \cdots, \lambda_{N}\right)$, i.e.,

$$
M^{t} E=S^{t} E \Lambda .
$$

Setting $U=V E^{T}$, we arrive at

$$
M^{h} V+S^{h} V \Lambda=G:=F\left(S^{t} E\right)^{-T} .
$$

Hence, the n-th column of the above matrix equation becomes:

$$
\left(\lambda_{n} S^{h}+M^{h}\right) \mathbf{v}_{n}=\mathbf{g}_{n}, \quad 0 \leq n \leq N .
$$

- Very efficient: only requires solving N elliptic equations in Ω.
- However, since M^{t} is non-symmetric, this approach suffers from large roundoff errors.

Error comparison with eigen and QZ decompositions

Table: A comparison of decomposition errors between Eigen and QZ decompositions.

	$\alpha=0.7$		$\alpha=0.7$ with enriched basis	
M	Eigen	QZ	Eigen	QZ
4	$5.91 \mathrm{e}-15$	$3.55 \mathrm{e}-16$	$3.86 \mathrm{e}-15$	$5.97 \mathrm{e}-16$
8	$2.56 \mathrm{e}-13$	$5.66 \mathrm{e}-16$	$2.53 \mathrm{e}-13$	$5.72 \mathrm{e}-16$
12	$4.05 \mathrm{e}-11$	$8.09 \mathrm{e}-16$	$6.11 \mathrm{e}-11$	$7.79 \mathrm{e}-16$
16	$3.27 \mathrm{e}-09$	$7.44 \mathrm{e}-16$	$7.49 \mathrm{e}-09$	$1.00 \mathrm{e}-15$
20	$5.85 \mathrm{e}-07$	$1.15 \mathrm{e}-15$	$9.68 \mathrm{e}-07$	$7.24 \mathrm{e}-16$
24	$8.23 \mathrm{e}-05$	$1.09 \mathrm{e}-15$	$2.85 \mathrm{e}-04$	$7.85 \mathrm{e}-16$
28	$4.54 \mathrm{e}-03$	$1.09 \mathrm{e}-15$	$2.80 \mathrm{e}-02$	$8.00 \mathrm{e}-16$
32	$1.88 \mathrm{e}-03$	$9.34 \mathrm{e}-16$	$9.08 \mathrm{e}-03$	$1.14 \mathrm{e}-15$
100	$3.16 \mathrm{e}-02$	$2.20 \mathrm{e}-15$	$1.05 \mathrm{e}-02$	$2.20 \mathrm{e}-15$

New approach: QZ-decomposition

We consider the following QZ decomposition:

$$
Q\left(S^{t}\right)^{T} Z=A, \quad Q\left(M^{t}\right)^{T} Z=B
$$

where Q, Z are unitary matrices, and A, B are upper triangular matrices.
Setting $U=V Q$, we arrive at

$$
M^{h} \vee A+S^{h} \vee B=G:=F Z
$$

We can solve the column vectors of V recursively,

$$
\left(a_{n, n} M^{h}+b_{n, n} S^{h}\right) \mathbf{v}_{n}=g_{n}-h_{n-1}, \quad 0 \leq n \leq N
$$

where $h_{n-1}=\sum_{k=0}^{n-1}\left(a_{k, n} M^{h}+b_{k, n} S^{h}\right) \mathbf{v}_{k}$. with the total cost $=O\left(N^{2} M\right)+N T(M)(T(M)$ the cost of solving one elliptic equation).

Error comparison with eigen and QZ decompositions

Table: A comparison of decomposition errors between Eigen and QZ decompositions.

	$\alpha=0.7$		$\alpha=0.7$ with enriched basis	
M	Eigen	QZ	Eigen	QZ
4	$5.91 \mathrm{e}-15$	$3.55 \mathrm{e}-16$	$3.86 \mathrm{e}-15$	$5.97 \mathrm{e}-16$
8	$2.56 \mathrm{e}-13$	$5.66 \mathrm{e}-16$	$2.53 \mathrm{e}-13$	$5.72 \mathrm{e}-16$
12	$4.05 \mathrm{e}-11$	$8.09 \mathrm{e}-16$	$6.11 \mathrm{e}-11$	$7.79 \mathrm{e}-16$
16	$3.27 \mathrm{e}-09$	$7.44 \mathrm{e}-16$	$7.49 \mathrm{e}-09$	$1.00 \mathrm{e}-15$
20	$5.85 \mathrm{e}-07$	$1.15 \mathrm{e}-15$	$9.68 \mathrm{e}-07$	$7.24 \mathrm{e}-16$
24	$8.23 \mathrm{e}-05$	$1.09 \mathrm{e}-15$	$2.85 \mathrm{e}-04$	$7.85 \mathrm{e}-16$
28	$4.54 \mathrm{e}-03$	$1.09 \mathrm{e}-15$	$2.80 \mathrm{e}-02$	$8.00 \mathrm{e}-16$
32	$1.88 \mathrm{e}-03$	$9.34 \mathrm{e}-16$	$9.08 \mathrm{e}-03$	$1.14 \mathrm{e}-15$
100	$3.16 \mathrm{e}-02$	$2.20 \mathrm{e}-15$	$1.05 \mathrm{e}-02$	$2.20 \mathrm{e}-15$

Error estimates

Lemma (Chen, S. \& Wang '16). Let $\alpha \in(0,1)$. Then, for any $v \in \mathcal{B}_{-\alpha, \alpha}^{s}(I)$,

$$
\left\|\pi_{N}^{(-\alpha, \alpha)} v-v\right\|_{\omega^{(-\alpha, \alpha)}} \lesssim N^{-(\alpha+s)}\left\|_{0} D_{t}^{\alpha+s} v\right\|_{\omega^{(s, s)}}
$$

and

$$
\left\|\left\|_{0} D_{t}^{\alpha}\left(\pi_{N}^{(-\alpha, \alpha)} v-v\right)\right\|_{I} \lesssim N^{-s}\right\|_{0} D_{t}^{\alpha+s} v \|_{\omega^{(s, s)}} .
$$

Theorem. If $u \in B^{\alpha}(\mathbb{D}):=H^{s}\left(I ; L^{2}(\Omega)\right) \cap L^{2}\left(I ; H_{\mathcal{L}}(\Omega)\right)$ and ${ }_{0} D_{t}^{\alpha+s} u \in L^{2}(\mathbb{D})$, we have
$\left\|u-u_{L}\right\|_{B^{\alpha}(\mathbb{D})} \lesssim N^{-s}\left\|_{0} D_{t}^{\alpha+s} u\right\|_{L^{2}(s, s)}(\mathbb{D})+\inf _{v_{L}(t, \cdot) \in V_{h}}\left\|u-v_{L}\right\|_{H^{\alpha}\left(I, H_{\mathcal{L}}(\Omega)\right)}$.
Unfortunately, u has weak singularity at $t=0$. The approximation space in time only includes the strongest singular term t^{α}, so the achievable convergence rate in N is limited.

Figure: Error in B^{α} against various N. Left: with the exact solution $u(x, y, t)=\sin (\pi x) \sin (\pi y) \cdot \sin \left(\pi t^{\alpha}\right)$ in $(-1,1)^{2}$; Right: with $f(x, y, t)=\left(x^{2}+y^{2}-1\right)$ in a disk.

Enriched spectral method

We know from the Mittag-Leffler formula that the solution of fractional ODEs takes the form:

$$
u=\sum_{i, j}^{\infty} \gamma_{i j}^{\alpha} t^{i+j \alpha}
$$

The GJFs only include the singular terms $t^{i+\alpha}$. In order to improve the convergence, we need to enrich the approximation space in time by other leading singular functions in the form of $\left\{t^{i+j \alpha}\right\}$:

$$
\mathcal{F}_{N}^{(k, \alpha)}(I)=\mathcal{F}_{N}^{(\alpha)}(I) \oplus\left\{\text { first } \mathrm{k} \text { terms of } t^{i+j \alpha} \text { not in } \mathcal{F}_{N}^{(\alpha)}(I)\right\}
$$

Then, the enriched Petrov-Galerkin method is: Find $u_{L}^{k} \in V_{h} \otimes \mathcal{F}_{N}^{(k, \alpha)}$, such that

$$
\mathcal{A}\left(u_{L}^{k}, v_{L}\right)=\left(g, v_{L}\right)_{\mathbb{D}}, \quad \forall v_{L} \in V_{h} \otimes \mathcal{P}_{N+k} .
$$

- Using a modified Gram-Schmidt process, one can construct an orthogonal set of k enriched basis functions.
- The linear system can still be efficiently solved by using the QZ decomposition.
- The convergence rate can be increased to arbitrary order as we increase k.

Improved error estimates for the enriched spectral method

Theorem. Let $\bar{k}+\nu(0<\nu<1)$ be the first $i+j \alpha$ not included in the enriched space.

- For $\max \left\{0, \alpha-\frac{1}{2}\right\}<\nu<\alpha$,

$$
\left\|u-u_{L}^{k}\right\|_{B^{\alpha}(\mathbb{D})} \lesssim N^{-\bar{k}}+\inf _{v_{L}(t, \cdot) \in V_{h}}\left\|u-v_{L}\right\|_{H^{\alpha}\left(I, H_{\mathcal{L}}(\Omega)\right)} .
$$

- For $\alpha<\nu<\min \left\{1, \alpha+\frac{1}{2}\right\}$,

$$
\left\|u-u_{L}^{k}\right\|_{B^{\alpha}(\mathbb{D})} \lesssim N^{-1-\bar{k}}+\inf _{v_{L}(t, \cdot) \in V_{h}}\left\|u-v_{L}\right\|_{H^{\alpha}\left(I, H_{\mathcal{L}}(\Omega)\right)}
$$

- For $\alpha+\frac{1}{2}<\nu<1$,

$$
\left\|u-u_{L}^{k}\right\|_{B^{\alpha}(\mathbb{D})} \lesssim N^{-2-\bar{k}}+\inf _{v_{L}(t, \cdot) \in V_{h}}\left\|u-v_{L}\right\|_{H^{\alpha}\left(I, H_{\mathcal{L}}(\Omega)\right)} .
$$

Figure: Errors in B^{α} against various N and α.

Consider now the nonlinear fractional PDEs:

$$
{ }_{0} D_{t}^{\alpha} v(x, t)+\mathcal{L} v(x, t)+\mathcal{N}(v(x, t))=g ; \quad v(x, 0)=0
$$

Let us denote

$$
\mathcal{A}(u, v):=\left({ }_{0} D_{t}^{\alpha} u, v\right)_{\mathbb{D}}+\left(\mathcal{L}^{\frac{1}{2}} u, \mathcal{L}^{\frac{1}{2}} v\right)_{\mathbb{D}}+(\mathcal{N}(u), v)_{\mathbb{D}}
$$

Petrov-Galerkin Approximation: Find $u_{L} \in V_{h} \otimes \mathcal{F}_{N}^{(\alpha)}$ s.t.

$$
\mathcal{A}\left(u_{L}, v_{L}\right)=\left(g, v_{L}\right)_{\mathbb{D}}, \quad \forall v_{L} \in V_{h} \otimes \mathcal{P}_{N}
$$

- The above nonlinear system can be solved by using Newton iteration which requires solving linear fractional PDEs with variable coefficients.
- We can use, as a preconditioner, the fast solver for linear fractional PDEs with constant coefficients. So the overall algorithm is still very efficient.

$$
{ }_{0}^{C} D_{t}^{\alpha} u(x, t)-\epsilon^{2} \Delta u(x, t)+f(u(x, t))=0, \quad \forall(x, t) \in \Omega,
$$

with the initial condition $u_{0}(x)= \begin{cases}1, & 0 \leq x \leq 1, \\ -1, & -1 \leq x<0 .\end{cases}$

Figure: Solution profile. Left: $\alpha=0.7, \epsilon=0.1$ at various t; Right: $\epsilon=0.1$ at $T=1$ with various α.

Concluding remarks

Part I. We developed efficient numerical methods for fractional Laplacian in bounded domains:

- we adopt the Caffarelli-Silverstre extension and developed efficient and accurate Laguerre-spectral method to deal with the singularity in the extended direction:
- The method is not intrusive and can be applied to any discretization in space.
- The method is much more efficient and easy to implement than using a finite-element approach in the extended direction.
- The approach presented here can be extended to more general fractional elliptic equations.

Part II. We developed efficient space-time Petrov-Galerkin method for time fractional PDEs using the following two new approaches:

- We use the QZ decomposition which leads to accurate decompositions for non-symmetric matrices.
- We enrich the GJF approximation space by adding leading singular terms to resolve the weak singularity at $t=0$.
Our Petrov-Galerkin method enjoys the following advantages:
- Accuracy: the enriched spectral method with a small number of modes can effectively resolve the weak singularity at $t=0$.
- Efficiency: the total cost is dominated by a small number of elliptic solvers in space variables.
- Flexibility: one can use any Galerkin type discretization in space.

Some future directions:

- How to effectively deal with fractional Laplacian in integral form with the Caffarelli-Silvestre extention?
- The space-time Petrov-Galerkin method is only effective for simulation of short-times or smooth evolutions. How to develop an efficient space-time method with a spectral-element discretization in-time?

Thank you!

