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Two main difficulties with fractional PDEs:

@ fractional derivatives are non-local operators which are much
more difficult and expensive to deal with than local operators.

e fractional PDEs have weakly singularities at t = 0 and/or
boundaries.

The following two situations will be considered:
@ Part |. Solving the fractional Laplacian using the
Caffarelli-Silverstre extension

@ Part Il. Space-time Petrov-Galerkin method for time-fractional
diffusion equations



Part |: Fractional Laplacian equations in bounded domains

We consider the fractional Laplacian equation in a bounded
domain Q:

(—A)SU(X) = f(X), X = (X17X27"'7Xd) € Qa
uloq =0,

where 0 < s < 1, and the fractional Laplacian operator is defined

through the spectral decomposition of Laplace operator.

Two review papers:
What is the fractional Laplacian? by Liscke et al.
Numerical methods for fractional diffusion, by Bonito et al.

Three approaches:
@ Using the discrete eigenfunctions of the Laplacian
@ Using the Dunford-Taylor formula

sin s7

u=(-A)"°f / p=(ul — D) dp
0

™

° Usini the Caffarelli-Silvestre extension icf. Stinia & Torrea '10i



Caffarelli-Silvestre extension

To overcome the difficulty associated with non-local operators,

Caffarelli-Silvestre '07 (see Stinga & Torrea '10 for the bounded
case) introduced an extension problem in d + 1 dimension with
local differential operators:

V- (y*VU(x,y)) =0, in D =Q x (0,00),
U(x,y) =0, on ;D = 09 x [0, 00),
Jim y*Uy(x,y) = —dsf(x),  lim U(x,y) =0

where @ =1 —2s and ds = 2172T(1 — 5)/I'(s). Then, the
solution of the fractional Laplacian equation can be expressed as

u(x) = U(x,0).

Hence, one only needs to solve the above d 4+ 1 dimensional
problems with local differential operators.



Results by using finite elements

Nochetto, Otarola & Salgado (2016) made a systematical study of
the finite element approximation to the extension problem.
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Nochetto et al 2016.



Improved convergence rate with a graded mesh (in y)
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Fig. 3 Computational rate of convergence for approximate solution of the fractional Laplacian over a
square with graded meshes on the extended dimension. Left panel: rate for s = 0.2; right panel: rate for
s = 0.8. In both cases, the rate is ~ (#.7;, )_1/3, in agreement with Theorem 5.4 and Remark 5.5

Q. Can we further improve the convergence rate in the extended
direction?




Galerkin approximation with Laguerre spectral method in y

The particular weight function y® in the extension problem calls
for the use of generalized Laguerre polynomials {£¢(y)} which are
mutually orthogonal w.r.t. the weight y®e /2.

Let us denote

Y = span{L(y) == LL(y)e /%, k=0,1,--- N},

For the x-directions, one can use your favorite approximation space
Xk, e.g., FEM or spectral method.

The Galerkin approximation for the extension problem is to find
Unk € XN,K = Y,‘\DI‘ x Xk such that

(y“VUNK,Vv)D = ds(f, V(X,O))Q,VV S XN,K~



Fast solvers

o Let {¢j(x)}1<j<k be a set of basis functions in Xk, we write

Unk = Y p Zszl kg di(y)i(x) and U = (i).

@ Let us denote
Sty = 09 ooy My = (v 8i(»), ok occ):
Sy = (Vxthj(x), Vithi(x ))n, Mg = (4j(x), ¥i(x))a-
Then, the linear system for the Galerkin approximation is
SYUM* + MY US* = F

@ Choice of basis functions for Yp:
Let £%(y) =0, we set ¢x(y) := LY 1y) — LY(y). Then
YN =span{¢k(y): k=0,1,---  N}. and we have

0,0() = 5(L510) + £500)).

Thanks to the orthogonality of generalized Laguerre
functions, MY and S¥ are both symmetric. penta-diagonal.
I



Fast solvers: continued

The above linear system can be solved efficiently by using the
matrix-diagonalization method.

Let SYE = MYEN where (E, \) consists of eigenvectors and
eigenvalues of SYx = AMYx.

Setting the change of variable U = EV/, we can reduce the matrix
system to a sequence of N problems in x-direction:

(NMX + SNy = (EX(MY)TF);, j=1,2,---,N.

Since usually N < K, this procedure is very efficient, and is not
intrusive as your favorite elliptic solver can be used.



Error estimates for the Laguerre spectral methods

@ Error estimates with generalized Laguerre functions:

min [0} (u = vi)llyasr < N80T 0]l yasm, 0 <1< m
V/\/EYRII

where 9, = (9, +1/2).
@ Then for the problem

—0y(y*0yu) =f, u(0)=0, lim u(y) =0,

y—00

the generalized Laguerre-Galerkin method in Y}/ leads to:

I(u = un)yllye S NE=2)87 0 o,



Error estimates for the extension problem

@ The error estimate for Galerkin approximation of the extension
problem in Xy k is:

IU = Unicllrye < NO=207 Ul yocemr
+ min [[Vx(U(x,0) = vid)

The first part is a typical result for spectral approximation.

@ Unfortunately, the solution is singular at y = 0 so that
Hé}"tuamq is only bounded for m = [2s] + 1. So the
Laguerre spectral method converges very slowly in the
y-direction.
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Form of singularities at t =0

A careful look at the extension problem reveals that the singularity
can be explicitly identified so it is possible to use special basic
functions to well represent the singular behavior at y = 0.

By using a separation of variables approach, one finds that the
solution to the extension problem can be expressed as

Ux,y) = > Un @n(x)thn(y)
n=1
where 1,(y) is the solution of (Stinga & Torrea '10)
~UH0) = ) 4 e a1 =0,y € A= (0,0%),
¥n(0) =1, lim ¢n(y) =0,
which can be expressed by Bessel function of the 2nd kind Ks(z):

Un(y) = (VA Ks(VAny), 6 =217%/T(s).




Form of singularities at t = 0: continued

We have

B SI_S(Z)_Is(Z) o ad 1 Z\2j+s
Ks(z) = 2 sin(em) Is(2) '_j_zoj!r(j-i-l—i-a)(z) ts

So we can derive

Un(y) = cs(v/Any)*Ks(v/Any)
> {\Fy 1—s(v/Any) = (V) 1s(VAny) }

2sm (s)

SCs n — n .
_ Z (VAny)? = (VAny)@+2e
~ 2sin(sm) = 22+sjIM(j + 2 — 2s)

= g1.0(y) + ¥**22.n(y),

where g1.,(y), g2,n(y) are smooth functions.



Enriched spectral method

It is natural to add some some singular parts to the approximation
space in the y-direction:

Yok =Yg o {y2sc“;*(y) cj=0,1,---, k},

and the new approximation space for the extension problem is:

We have the following error estimate with the new approximation
space:

[2s] _
lu = Ui, 0) [ sy S N”2 4+ min [[V(u = vic)|-
vk EXK



Solution of the linear system

One can apply the same matrix diagonalization process as before,
but (S¥, MY) are usually severely ill conditioned since the added

singular functions are "similar at y = 0" and have no orthogonal
relation with the Laguerre functions. This approach can only be

used for small k (which is usually enough).
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Figure: Error behaviors with the enriched spectral method (1-D): s=0.2
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Part |l. Space-time Petrov-Galerkin method

We consider the following class of fractional PDEs (0 < a < 1):
SDv(x,t) + Lv(x,t) + N(v(x,1)) =0, V(x,t)eD:=Qx(0,T],

with suitable boundary conditions and initial condition, where L is
a linear elliptic operator, A is a lower-order nonlinear operator,
and §D& (0 < o < 1) is the left-sided Caputo fractional derivative
of order a.

We can reformulate the above problem using the Riemann-Liouville
derivative with homogeneous initial condition:

oD u(x, t) + Lu(x, t) + N(u(x, t)) = g(x,t), v(x,0)=0.



Two main difficulties in dealing with time-fractional PDEs:

@ Solution at the next time step depends on solutions at all
previous time steps.

@ The solution is weakly singular at t = 0 so a usual approach
will not lead to high accuracy.

Some existing approaches:

o Finite-difference methods with graded meshes at t = 0.

e Convolution integrals (Lubich '86, ...).

@ Spectral-element method with geometric mesh leads
exponential convergence (Mao & S. '17), but it is expensive
and complicated.

@ Space-time spectral methods:

e using usual polynomials (Li & Xu '10) and Miintz polynomials

(Hou & Xu '17);
e using poly-fractonomials or generalized Jacobi functions
(Karniadakis & Zayernouri '15, Chen, S. & Wang, '16, Mao &

S. '16).



Petrov-Galerkin formulation for fractional (in time) PDEs

We first consider the linear equations with A/ = 0:
oDffu(x, t) + Lu(x, t) = g(x, t); u(x,0) =0.
Petrov-Galerkin formulation: Find u € Hy(l) ® Hz(Q2) s.t
A(u,v) = (0D%u, V)p+(L2u, L2v)p = (g, V)p, Vv € L2(1)@H.(Q),
where Hz(Q) = {u € L%(Q) : (E%u,ﬁ%u) < 00}
The Petrov-Galerkin formulation is well-posed since
A(u.oD5'u) = [[oDf ul[Fapy + (20,007 L2 u)
> (10D |32 + Co(DE L2u, (D} L3 u)p
= 0DF ooy + Co cos(2)0DF vl ey

2 C3(||0D?U”L2(]D)) + ||0D?UHL2(/7H£(Q))) = C3||UH%36«(D)-



Basis functions in time: using generalized Jacobi functions

We define shifted generalized Jacobi functions (or
poly-fractonomials, Karniadakis & Zayernouri '13)

J,(f"")(t) — tnﬁgo‘”)(t), tel, n>0,

( e 2 - T . . .
where P} ’")(t) = P ’”)(%) is the shifted Jacobi

polynomial.

It satisfies the following remarkable property:

Mn+a+1)

(0,0
" PO (1).

oDF IS (t) =
So we define our approximation space in time by
Fi) = {E70(®)  u(t) € Pa}
= span{J,g_a’a)(t) = to‘ﬁ,(,_a’a)(t) :0<n< N},

which incorporates the homogeneous boundary conditions at
t=0.
I



Space-time Petrov-Galerkin method

Let V}, be a finite-dimensional approximation space of V = H,(Q):

Vi = Span{¢la ¢2a to 7¢M}

Then, our Petrov-Galerkin method is: Find u; € Vj, ® f,(\,a), such
that
.A(UL7 VL) = (g, VL)]DM Vv, € V) ® Pp.

Q. The above linear system is of size L = MN. How to solve it
efficiently?

A. Since the domain D is a (separable) tensor product domain, we
can employ a discrete separation of variables.



Fast direct solver

We write u (x, ) = 37 SN Gndm(x) IS (t), and

denote
fiom = (£, omCILE (D), F = (Finn), (ﬁ” )
sty = / oDE S5 () Ly(t)dt,  mb, / Jhmee) t)dt,
pq / ﬁz(bqﬁz(ﬁp dx, m / PqPp dx,
St = (s5e). M= (). sh). M= (mhy)
Then, we have
MPUSHT + shuMh)T =
Note that S* = I, but M* is full and non-symmetric.



Usual approach: diagonalization with eigen-decomposition

Let E := (&, ,&n) be the matrix formed by the orthonormal
eigenvectors of the generalized eigenvalue problem Mg = \;S'g;
and A = diag(Xo, -+, An), i€,

M'E = St EA.
Setting U = VET, we arrive at
MMV +ShVA =G .= F(STE)"".
Hence, the n-th column of the above matrix equation becomes:

()\,,Sh + l\/lh)v,7 =gn, 0<n<N.

@ Very efficient: only requires solving N elliptic equations in €.

@ However, since M! is non-symmetric, this approach suffers
from large roundoff errors.



Error comparison with eigen and QZ decompositions

Table: A comparison of decomposition errors between Eigen and QZ
decompositions.

a=0.7 a = 0.7 with enriched basis
M Eigen QZ Eigen QZ
4 5.91e-15 | 3.55e-16 || 3.86e-15 5.97e-16
8 2.56e-13 | 5.66e-16 || 2.53e-13 5.72e-16
12 || 4.05e-11 | 8.09e-16 || 6.11e-11 7.79¢-16
16 || 3.27e-09 | 7.44e-16 || 7.49e-09 1.00e-15

20 || 5.85e-07 | 1.15e-15 || 9.68e-07 7.24e-16
24 || 8.23e-05 | 1.09e-15 || 2.85e-04 7.85e-16

28 || 4.54e-03 | 1.09e-15 || 2.80e-02 8.00e-16
32 || 1.88e-03 | 9.34e-16 || 9.08e-03 1.14e-15
100 || 3.16e-02 | 2.20e-15 || 1.05e-02 2.20e-15




New approach: QZ-decomposition

We consider the following QZ decomposition:
Q(SH)Tz=4A QMY)TZ=8,

where Q, Z are unitary matrices, and A, B are upper triangular
matrices.
Setting U = VQ, we arrive at

M'VA+S'"VB=G:=FZ
We can solve the column vectors of V recursively,

(an,th + bn,nsh) Vp=gn—hp_1, 0<n<N.

where h,_1 = Z;é (ak,nM" + by nS") vi. with the total cost
= O(N?M) + NT(M) (T (M) the cost of solving one elliptic
equation).



Error comparison with eigen and QZ decompositions

Table: A comparison of decomposition errors between Eigen and QZ
decompositions.

a=0.7 a = 0.7 with enriched basis
M Eigen QZ Eigen QZ
4 5.91e-15 | 3.55e-16 || 3.86e-15 5.97e-16
8 2.56e-13 | 5.66e-16 || 2.53e-13 5.72e-16
12 || 4.05e-11 | 8.09e-16 || 6.11e-11 7.79¢-16
16 || 3.27e-09 | 7.44e-16 || 7.49e-09 1.00e-15

20 || 5.85e-07 | 1.15e-15 || 9.68e-07 7.24e-16
24 || 8.23e-05 | 1.09e-15 || 2.85e-04 7.85e-16

28 || 4.54e-03 | 1.09e-15 || 2.80e-02 8.00e-16
32 || 1.88e-03 | 9.34e-16 || 9.08e-03 1.14e-15
100 || 3.16e-02 | 2.20e-15 || 1.05e-02 2.20e-15




Error estimates

Lemma (Chen, S. & Wang '16). Let o € (0,1). Then, for any
v E Bs—a,a(/)a
Iy v = Vgt S N 0DEF o

and
oD (v = V)l S N2 oDE V|| e

Theorem. If u € B*(D) := H*(/; L2(Q)) N L2(1; He(RQ)) and
oD&u € L2(D), we have

lu=uillgemy S N~lloDF* ullz my+ inf " lu=villHe (1,1 ())-

) ‘/L(t")E

Unfortunately, u has weak singularity at t = 0. The approximation
space in time only includes the strongest singular term t“, so the
achievable convergence rate in N is limited.
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Figure: Error in B® against various N. Left: with the exact solution
u(x, y, t) = sin(mx)sin(ry) - sin(rt*) in (—1,1)% Right: with
f(x,y,t) = (x* + y?> — 1) in a disk.



Enriched spectral method

We know from the Mittag-Leffler formula that the solution of
fractional ODEs takes the form:

o0
. o itjo
u= g vt
ij

The GJFs only include the singular terms /. In order to improve
the convergence, we need to enrich the approximation space in
time by other leading singular functions in the form of {t//*}:

.F,(Vk’a)(l) = .F,(Va)(l) @ {first k terms of t'™/* not in f,(\,a)(l)}.



Then, the enriched Petrov-Galerkin method is: Find
uk € Viy @ F, such that

A(uf,vi) = (g, vi)p,  Yvi € Vi @ Prsk.

@ Using a modified Gram-Schmidt process, one can construct an
orthogonal set of k enriched basis functions.

@ The linear system can still be efficiently solved by using the
QZ decomposition.

@ The convergence rate can be increased to arbitrary order as
we increase k.



Improved error estimates for the enriched spectral method

Theorem. Let k + v (0 < v < 1) be the first i 4+ jo not included
in the enriched space.

@ For max{0,a — 1} <v < q,

— U ey < N7 inf - . .
u—ufllge) S +VL(J,’.’>GV,,H” VL|| He (1,1 ()

@ Fora <v <min{l,a+ 3},

— ufllgemy SNTF 4 inf flu— vl .
lu = ufllB) S oty o= viellme o)

ve(

° Fora+%<u<1,

— ufllge@y SN F 4+ inf lu— vl .
|u—uflla() S + t'_’r_l)evhHU VLI e (1,1 ()

VL(
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Extension to nonlinear problems

Consider now the nonlinear fractional PDEs:
oD v(x, t) + Lv(x,t) + N(v(x, t)) = g; v(x,0) = 0.
Let us denote
A(u, v) = (0D2u, v)p + (L2, L2v)p + (N (1), v)p.
Petrov-Galerkin Approximation: Find u; € Vj, ®]:,(Va) s.t.

A(ug,vi) = (g, vi)p, Vvi € Vi @ Py.

@ The above nonlinear system can be solved by using Newton
iteration which requires solving linear fractional PDEs with
variable coefficients.

@ We can use, as a preconditioner, the fast solver for linear
fractional PDEs with constant coefficients. So the overall
algorithm is still very efficient.



Time fractional Allen-Cahn equation

§DCu(x, t) — Au(x, t) + f(u(x,t)) =0, V(x, t) € Q,

<x <
with the initial condition up(x) = { El (11_2;<170

I
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Figure: Solution profile. Left: @ = 0.7, ¢ = 0.1 at various t; Right:
e = 0.1 at T = 1 with various a.



Concluding remarks

Part . We developed efficient numerical methods for fractional
Laplacian in bounded domains:

@ we adopt the Caffarelli-Silverstre extension and developed
efficient and accurate Laguerre-spectral method to deal with
the singularity in the extended direction:

e The method is not intrusive and can be applied to any
discretization in space.

e The method is much more efficient and easy to implement than
using a finite-element approach in the extended direction.

e The approach presented here can be extended to more general
fractional elliptic equations.



Part 1. We developed efficient space-time Petrov-Galerkin method
for time fractional PDEs using the following two new approaches:

@ We use the QZ decomposition which leads to accurate
decompositions for non-symmetric matrices.

@ We enrich the GJF approximation space by adding leading
singular terms to resolve the weak singularity at t = 0.

Our Petrov-Galerkin method enjoys the following advantages:

@ Accuracy: the enriched spectral method with a small number
of modes can effectively resolve the weak singularity at t = 0.

o Efficiency: the total cost is dominated by a small number of
elliptic solvers in space variables.

@ Flexibility: one can use any Galerkin type discretization in
space.



Some future directions:

@ How to effectively deal with fractional Laplacian in integral
form with the Caffarelli-Silvestre extention?

@ The space-time Petrov-Galerkin method is only effective for
simulation of short-times or smooth evolutions. How to
develop an efficient space-time method with a
spectral-element discretization in-time?

Thank youl!



