Efficient Numerical Methods for Fractional Laplacian and time fractional PDEs

Jie Shen

Purdue University

Collaborators: Sheng Chen and Changtao Sheng

ICERM Workshop on Fractional PDEs, June 18-22, 2018

Two main difficulties with fractional PDEs:

- fractional derivatives are non-local operators which are much more difficult and expensive to deal with than local operators.
- fractional PDEs have weakly singularities at t = 0 and/or boundaries.

The following two situations will be considered:

- Part I. Solving the fractional Laplacian using the Caffarelli-Silverstre extension
- Part II. Space-time Petrov-Galerkin method for time-fractional diffusion equations

Part I: Fractional Laplacian equations in bounded domains

We consider the fractional Laplacian equation in a bounded domain Ω :

$$\begin{cases} (-\Delta)^{s} u(\mathbf{x}) = f(\mathbf{x}), & \mathbf{x} = (x_1, x_2, \dots, x_d) \in \Omega, \\ u|_{\partial\Omega} = 0, \end{cases}$$

where 0 < s < 1, and the fractional Laplacian operator is defined through the spectral decomposition of Laplace operator.

Two review papers:

What is the fractional Laplacian? by Liscke et al. Numerical methods for fractional diffusion, by Bonito et al.

Three approaches:

- Using the discrete eigenfunctions of the Laplacian
- Using the Dunford-Taylor formula

$$u = (-\Delta)^{-s} f = \frac{\sin s\pi}{\pi} \int_0^\infty \mu^{-s} (\mu I - \Delta)^{-1} f \, d\mu$$

● Using the Caffarelli-Silvestre extension (cf. Stinga & Torrea '10) 📱 🗠 🗠

To overcome the difficulty associated with non-local operators, Caffarelli-Silvestre '07 (see Stinga & Torrea '10 for the bounded case) introduced an extension problem in d + 1 dimension with local differential operators:

 $\begin{cases} \nabla \cdot (y^{\alpha} \nabla U(\mathbf{x}, y)) = 0, & \text{in } \mathcal{D} = \Omega \times (0, \infty), \\ U(\mathbf{x}, y) = 0, & \text{on } \partial_L \mathcal{D} = \partial \Omega \times [0, \infty), \\ \lim_{y \to 0} y^{\alpha} U_y(\mathbf{x}, y) = -d_s f(\mathbf{x}), & \lim_{y \to \infty} U(\mathbf{x}, y) = 0 \end{cases}$

where $\alpha = 1 - 2s$ and $d_s = 2^{1-2s}\Gamma(1-s)/\Gamma(s)$. Then, the solution of the fractional Laplacian equation can be expressed as

u(x)=U(x,0).

Hence, one only needs to solve the above d + 1 dimensional problems with local differential operators.

Results by using finite elements

Nochetto, Otarola & Salgado (2016) made a systematical study of the finite element approximation to the extension problem.

Fig. 2 Computational rate of convergence $#(\mathscr{T}_{\mathcal{Y}})^{-s/(n+1)}$ for quasi-uniform meshes $\mathscr{T}_{\mathcal{Y}}$, with s = 0.2 and n = 1

Figure: Q_1 FEM convergence rate of the quasi-uniform mesh (in y), Nochetto et al 2016.

Improved convergence rate with a graded mesh (in y)

Fig. 3 Computational rate of convergence for approximate solution of the fractional Laplacian over a square with graded meshes on the extended dimension. *Left panel*: rate for s = 0.2; *right panel*: rate for s = 0.8. In both cases, the rate is $\approx (\# \mathscr{D}_{Y_k})^{-1/3}$, in agreement with Theorem 5.4 and Remark 5.5

Q. Can we further improve the convergence rate in the extended direction?

Galerkin approximation with Laguerre spectral method in y

The particular weight function y^{α} in the extension problem calls for the use of generalized Laguerre polynomials $\{\mathcal{L}_{k}^{\alpha}(y)\}$ which are mutually orthogonal w.r.t. the weight $y^{\alpha}e^{-y/2}$. Let us denote

$$Y_N^lpha = \operatorname{span}\{\hat{\mathcal{L}}_k^lpha(y) := \mathcal{L}_k^lpha(y)e^{-y/2}, \ k = 0, 1, \cdots, N\},$$

For the x-directions, one can use your favorite approximation space X_K , e.g., FEM or spectral method. The Galerkin approximation for the extension problem is to find $u_{NK} \in X_{N,K} = Y_N^{\alpha} \times X_K$ such that

 $(y^{\alpha} \nabla u_{NK}, \nabla v)_D = d_s(f, v(x, 0))_{\Omega}, \forall v \in X_{N,K}.$

Fast solvers

- Let $\{\psi_j(x)\}_{1 \le j \le K}$ be a set of basis functions in X_K , we write $u_{NK} = \sum_{k=1}^N \sum_{j=1}^K \tilde{u}_{kj} \phi_k(y) \psi_j(x)$ and $U = (\tilde{u}_{kj})$.
- Let us denote

$$\begin{split} S_{kj}^{y} &= (y^{\alpha} \phi_{j}'(y), \phi_{k}'(y))_{(0,\infty)}, \quad M_{kj}^{y} &= (y^{\alpha} \phi_{j}(y), \phi_{k}(y))_{(0,\infty)}, \\ S_{kj}^{x} &= (\nabla_{x} \psi_{j}(x), \nabla_{x} \psi_{k}(x))_{\Omega}, \quad M_{kj}^{x} &= (\psi_{j}(x), \psi_{k}(x))_{\Omega}. \end{split}$$

Then, the linear system for the Galerkin approximation is

 $S^{y}UM^{x} + M^{y}US^{x} = F.$

• Choice of basis functions for Y_N^{α} : Let $\mathcal{L}_{-1}^{\alpha}(y) = 0$, we set $\phi_k(y) := \hat{\mathcal{L}}_{k-1}^{\alpha}y) - \hat{\mathcal{L}}_k^{\alpha}(y)$. Then $Y_N^{\alpha} = \operatorname{span}\{\phi_k(y): k = 0, 1, \dots, N\}$. and we have $\partial_y \phi_k(y) = \frac{1}{2}(\hat{\mathcal{L}}_{k-1}^{\alpha}y) + \hat{\mathcal{L}}_k^{\alpha}(y))$.

Thanks to the orthogonality of generalized Laguerre functions, M^y and S^y are both symmetric penta-diagonal.

The above linear system can be solved efficiently by using the matrix-diagonalization method.

Let $S^{y}E = M^{y}E\Lambda$ where (E, Λ) consists of eigenvectors and eigenvalues of $S^{y}\bar{x} = \lambda M^{y}\bar{x}$.

Setting the change of variable U = EV, we can reduce the matrix system to a sequence of N problems in x-direction:

 $(\lambda_j M^{\times} + S^{\times}) \bar{v}_j = (E^t (M^y)^{-1} F)_j, \quad j = 1, 2, \cdots, N.$

Since usually $N \ll K$, this procedure is very efficient, and is not intrusive as your favorite elliptic solver can be used.

Error estimates for the Laguerre spectral methods

• Error estimates with generalized Laguerre functions:

 $\min_{v_N\in Y_N^{\alpha}} \|\hat{\partial}_y^l(u-v_N)\|_{y^{\alpha+l}} \lesssim N^{(l-m)/2} \|\hat{\partial}_y^m u\|_{y^{\alpha+m}}, \ 0 \le l \le m$

where
$$\hat{\partial}_y = (\partial_y + 1/2).$$

• Then for the problem

$$-\partial_y(y^{\alpha}\partial_y u) = f, \quad u(0) = 0, \lim_{y \to \infty} u(y) = 0,$$

the generalized Laguerre-Galerkin method in Y_N^{α} leads to:

$$\|(u-u_N)_y\|_{y^{lpha}} \lesssim N^{(1-m)/2} \|\hat{\partial}_y^m u\|_{y^{lpha+m-1}}.$$

Error estimates for the extension problem

• The error estimate for Galerkin approximation of the extension problem in $X_{N,K}$ is:

$$\begin{split} \|U - U_{NK}\|_{1,y^{\alpha}} \lesssim N^{(1-m)/2} \|\widehat{\partial}_{y}^{m}U\|_{y^{\alpha+m-1}} \\ + \min_{v_{K} \in X_{K}} \|\nabla_{x}(U(x,0) - v_{K})\| \end{split}$$

The first part is a typical result for spectral approximation.

• Unfortunately, the solution is singular at y = 0 so that $\|\hat{\partial}_{y}^{m}u\|_{y^{\alpha+m-1}}$ is only bounded for m = [2s] + 1. So the Laguerre spectral method converges very slowly in the y-direction.

Figure: $\lambda = 2$, s = 0.5, 0.31, 0.82.

Form of singularities at t = 0

A careful look at the extension problem reveals that the singularity can be explicitly identified so it is possible to use special basic functions to well represent the singular behavior at y = 0. By using a separation of variables approach, one finds that the solution to the extension problem can be expressed as

$$U(\mathbf{x}, y) = \sum_{n=1}^{\infty} \widetilde{U}_n \varphi_n(\mathbf{x}) \psi_n(y)$$

where $\psi_n(y)$ is the solution of (Stinga & Torrea '10)

$$\begin{cases} -\psi_n''(y) - \frac{1-2s}{y}\psi_n'(y) + \lambda_n \ \psi_n(y) = 0, \quad y \in \Lambda = (0,\infty), \\ \psi_n(0) = 1, \quad \lim_{y \to \infty} \psi_n(y) = 0, \end{cases}$$

which can be expressed by Bessel function of the 2nd kind $K_s(z)$:

$$\psi_n(y) = c_s(\sqrt{\lambda_n}y)^s K_s(\sqrt{\lambda_n}y), \quad c_s = 2^{1-s}/\Gamma(s).$$

Form of singularities at t = 0: continued

We have

$$\mathcal{K}_{s}(z) := rac{s}{2} rac{l_{-s}(z) - l_{s}(z)}{\sin(s\pi)}, \quad l_{s}(z) := \sum_{j=0}^{\infty} rac{1}{j! \Gamma(j+1+\alpha)} (rac{z}{2})^{2j+s}.$$

So we can derive

$$\begin{split} \psi_n(y) &= c_s(\sqrt{\lambda_n}y)^s \mathcal{K}_s(\sqrt{\lambda_n}y) \\ &= \frac{sc_s}{2\mathrm{sin}(s\pi)} \{ (\sqrt{\lambda_n}y)^s I_{-s}(\sqrt{\lambda_n}y) - (\sqrt{\lambda_n}y)^s I_s(\sqrt{\lambda_n}y) \} \\ &= \frac{sc_s}{2\mathrm{sin}(s\pi)} \sum_{j=0}^{\infty} \frac{(\sqrt{\lambda_n}y)^{2j} - (\sqrt{\lambda_n}y)^{2j+2s}}{2^{2j+s}j!\Gamma(j+2-2s)} \\ &= g_{1,n}(y) + y^{2s}g_{2,n}(y), \end{split}$$

where $g_{1,n}(y)$, $g_{2,n}(y)$ are smooth functions.

Enriched spectral method

It is natural to add some some singular parts to the approximation space in the *y*-direction:

$$Y_{N}^{\alpha,k} = Y_{N}^{\alpha} \oplus \{y^{2s} \hat{\mathcal{L}}_{j}^{\alpha}(y) : j = 0, 1, \cdots, k\},\$$

and the new approximation space for the extension problem is:

$$X_{N,K}^{k}=Y_{N}^{\alpha,k}\times X_{K}.$$

We have the following error estimate with the new approximation space:

$$\|u-U_{NK}^k(x,0)\|_{H^s(\Omega)} \lesssim N^{-rac{[2s]}{2}-k} + \min_{v_{\mathcal{K}}\in X_{\mathcal{K}}} \|
abla(u-v_{\mathcal{K}})\|.$$

Solution of the linear system

One can apply the same matrix diagonalization process as before, but (S^y, M^y) are usually severely ill conditioned since the added singular functions are "similar at y = 0" and have no orthogonal relation with the Laguerre functions. This approach can only be used for small k (which is usually enough).

Figure: Error behaviors with the enriched spectral method (1-D): s=0.2

Figure: Smooth solution with a spectral method in $\Omega = (-1, 1)^2$: Left: s = 0.2, Right: s = 0.8.

э

∃ >

▲ 同 ▶ → ● 三

Figure: Non-smooth solution with a finite element method in $\Omega = (-1, 1)$: Left: f(x) = 1, s = 0.2, Right: $f(x) = (1 - x^2)$, s = 0.7.

We consider the following class of fractional PDEs (0 < α < 1):

 ${}_0^C D_t^lpha v(x,t) + \mathcal{L} v(x,t) + \mathcal{N}(v(x,t)) = 0, \quad orall (x,t) \in \mathbb{D} := \Omega imes (0,T],$

with suitable boundary conditions and initial condition, where \mathcal{L} is a linear elliptic operator, \mathcal{N} is a lower-order nonlinear operator, and ${}_{0}^{C}D_{t}^{\alpha}$ (0 < α < 1) is the left-sided Caputo fractional derivative of order α .

We can reformulate the above problem using the Riemann-Liouville derivative with homogeneous initial condition:

 ${}_0D_t^\alpha u(x,t) + \mathcal{L}u(x,t) + \mathcal{N}(u(x,t)) = g(x,t), \quad v(x,0) = 0.$

Two main difficulties in dealing with time-fractional PDEs:

- Solution at the next time step depends on solutions at all previous time steps.
- The solution is weakly singular at t = 0 so a usual approach will not lead to high accuracy.
- Some existing approaches:
 - Finite-difference methods with graded meshes at t = 0.
 - Convolution integrals (Lubich '86, ...).
 - Spectral-element method with geometric mesh leads exponential convergence (Mao & S. '17), but it is expensive and complicated.
 - Space-time spectral methods:
 - using usual polynomials (Li & Xu '10) and Müntz polynomials (Hou & Xu '17);
 - using poly-fractonomials or generalized Jacobi functions (Karniadakis & Zayernouri '15, Chen, S. & Wang, '16, Mao & S. '16).

Petrov-Galerkin formulation for fractional (in time) PDEs

We first consider the linear equations with $\mathcal{N} = 0$:

 $_{0}D_{t}^{\alpha}u(x,t) + \mathcal{L}u(x,t) = g(x,t); \qquad u(x,0) = 0.$

Petrov-Galerkin formulation: Find $u \in H_0^{\alpha}(I) \otimes H_{\mathcal{L}}(\Omega)$ s.t.

$$\begin{split} \mathcal{A}(u,v) &:= ({}_0D_t^{\alpha}u,v)_{\mathbb{D}} + (\mathcal{L}^{\frac{1}{2}}u,\mathcal{L}^{\frac{1}{2}}v)_{\mathbb{D}} = (g,v)_{\mathbb{D}}, \quad \forall v \in L^2(I) \otimes \mathcal{H}_{\mathcal{L}}(\Omega), \\ \text{where } \mathcal{H}_{\mathcal{L}}(\Omega) &= \{ u \in L^2(\Omega) : (\mathcal{L}^{\frac{1}{2}}u,\mathcal{L}^{\frac{1}{2}}u) < \infty \}. \end{split}$$

The Petrov-Galerkin formulation is well-posed since

 $\begin{aligned} \mathcal{A}(u, {}_{0}D_{t}^{\alpha}u) &= \|{}_{0}D_{t}^{\alpha}u\|_{L^{2}(\mathbb{D})}^{2} + (\mathcal{L}^{\frac{1}{2}}u, {}_{0}D_{t}^{\alpha}\mathcal{L}^{\frac{1}{2}}u)_{\mathbb{D}} \\ &\geq \|{}_{0}D_{t}^{\alpha}u\|_{L^{2}(\mathbb{D})}^{2} + C_{2}(D_{t}^{\frac{\alpha}{2}}\mathcal{L}^{\frac{1}{2}}u, {}_{t}D_{T}^{\frac{\alpha}{2}}\mathcal{L}^{\frac{1}{2}}u)_{\mathbb{D}} \\ &= \|{}_{0}D_{t}^{\alpha}u\|_{L^{2}(\mathbb{D})}^{2} + C_{2}\cos(\frac{\pi\alpha}{2})\|{}_{0}D_{t}^{\frac{\alpha}{2}}u\|_{L^{2}(I,\mathcal{H}_{\mathcal{L}}(\Omega))}^{2} \\ &\geq C_{3}(\|{}_{0}D_{t}^{\alpha}u\|_{L^{2}(\mathbb{D})}^{2} + \|{}_{0}D_{t}^{\alpha}u\|_{L^{2}(I,\mathcal{H}_{\mathcal{L}}(\Omega))}^{2}) := C_{3}\|u\|_{B^{\alpha}(\mathbb{D})}^{2}. \end{aligned}$

Basis functions in time: using generalized Jacobi functions

We define shifted generalized Jacobi functions (or poly-fractonomials, Karniadakis & Zayernouri '13)

 $J_n^{(\alpha,\eta)}(t) = t^\eta \widetilde{P}_n^{(\alpha,\eta)}(t), \quad t \in I, \quad n \ge 0,$

where $\widetilde{P}_n^{(\alpha,\eta)}(t) = P_n^{(\alpha,\eta)}(\frac{2t-T}{T})$ is the shifted Jacobi polynomial.

It satisfies the following remarkable property:

$${}_0D_t^{\alpha}J_n^{(-\alpha,\alpha)}(t)=\frac{\Gamma(n+\alpha+1)}{n!}\widetilde{P}_n^{(0,0)}(t).$$

So we define our approximation space in time by

$$\begin{split} \mathcal{F}_{N}^{(\alpha)} &:= \{t^{\alpha}\psi(t):\psi(t)\in\mathcal{P}_{N}\}\\ &= \mathrm{span}\{J_{n}^{(-\alpha,\alpha)}(t) = t^{\alpha}\widetilde{P}_{n}^{(-\alpha,\alpha)}(t): 0\leq n\leq N\}, \end{split}$$

which incorporates the homogeneous boundary conditions at t = 0.

Let V_h be a finite-dimensional approximation space of $V = H_{\mathcal{L}}(\Omega)$:

$$V_h = \operatorname{span}\{\phi_1, \phi_2, \cdots, \phi_M\}$$

Then, our Petrov-Galerkin method is: Find $u_L \in V_h \otimes \mathcal{F}_N^{(\alpha)}$, such that

$$\mathcal{A}(u_L, v_L) = (g, v_L)_{\mathbb{D}}, \quad \forall v_L \in V_h \otimes \mathcal{P}_N.$$

Q. The above linear system is of size L = MN. How to solve it efficiently?

A. Since the domain \mathbb{D} is a (separable) tensor product domain, we can employ a discrete separation of variables.

Fast direct solver

We write $u_L(x,t) = \sum_{m=1}^{M} \sum_{n=0}^{N} \widetilde{u}_{mn} \phi_m(x) J_n^{(-\alpha,\alpha)}(t)$, and denote

$$\begin{split} f_{mn} &= (f, \phi_m(x) L_n^{(\alpha)}(t))_{\Omega}, \quad F = (f_{mn}), \quad U = (\widetilde{u}_{mn}^h), \\ s_{pq}^t &= \int_I {}_0 D_t^{\alpha} J_q^{(-\alpha,\alpha)}(t) L_p(t) dt, \quad m_{pq}^t = \int_I J_q^{(-\alpha,\alpha)}(t) L_p(t) dt, \\ s_{pq}^h &= \int_{\Omega} \mathcal{L}^{\frac{1}{2}} \phi_q \mathcal{L}^{\frac{1}{2}} \phi_p dx, \quad m_{pq}^h = \int_{\Omega} \phi_q \phi_p dx, \\ S^t &= (s_{pq}^t), \quad M^t = (m_{pq}^t), \quad S^h = (s_{pq}^h), \quad M^h = (m_{pq}^h). \end{split}$$

Then, we have

$$M^h U(S^t)^T + S^h U(M^t)^T = F.$$

Note that $S^t = I$, but M^t is full and non-symmetric.

Usual approach: diagonalization with eigen-decomposition

Let $E := (\bar{e}_0, \dots, \bar{e}_N)$ be the matrix formed by the orthonormal eigenvectors of the generalized eigenvalue problem $M^t \bar{e}_j = \lambda_j S^t \bar{e}_j$ and $\Lambda = \text{diag}(\lambda_0, \dots, \lambda_N)$, i.e.,

 $M^t E = S^t E \Lambda.$

Setting $U = VE^T$, we arrive at

 $M^h V + S^h V \Lambda = G := F(S^t E)^{-T}.$

Hence, the *n*-th column of the above matrix equation becomes:

 $(\lambda_n S^h + M^h) \mathbf{v}_n = \mathbf{g}_n, \qquad 0 \le n \le N.$

- Very efficient: only requires solving N elliptic equations in Ω .
- However, since M^t is non-symmetric, this approach suffers from large roundoff errors.

Table: A comparison of decomposition errors between Eigen and QZ decompositions.

	$\alpha = 0.7$		$\alpha = 0.7$ with enriched basis	
M	Eigen	QZ	Eigen	QZ
4	5.91e-15	3.55e-16	3.86e-15	5.97e-16
8	2.56e-13	5.66e-16	2.53e-13	5.72e-16
12	4.05e-11	8.09e-16	6.11e-11	7.79e-16
16	3.27e-09	7.44e-16	7.49e-09	1.00e-15
20	5.85e-07	1.15e-15	9.68e-07	7.24e-16
24	8.23e-05	1.09e-15	2.85e-04	7.85e-16
28	4.54e-03	1.09e-15	2.80e-02	8.00e-16
32	1.88e-03	9.34e-16	9.08e-03	1.14e-15
100	3.16e-02	2.20e-15	1.05e-02	2.20e-15

New approach: QZ-decomposition

We consider the following QZ decomposition:

 $Q(S^t)^T Z = A, \quad Q(M^t)^T Z = B,$

where Q, Z are unitary matrices, and A, B are upper triangular matrices.

Setting U = VQ, we arrive at

 $M^h V A + S^h V B = G := FZ.$

We can solve the column vectors of V recursively,

$$(a_{n,n}M^h+b_{n,n}S^h)\mathbf{v}_n=g_n-h_{n-1}, \quad 0\leq n\leq N.$$

where $h_{n-1} = \sum_{k=0}^{n-1} (a_{k,n}M^h + b_{k,n}S^h) \mathbf{v}_k$. with the total cost $= O(N^2M) + NT(M) (T(M))$ the cost of solving one elliptic equation).

Table: A comparison of decomposition errors between Eigen and QZ decompositions.

	$\alpha = 0.7$		$\alpha = 0.7$ with enriched basis	
M	Eigen	QZ	Eigen	QZ
4	5.91e-15	3.55e-16	3.86e-15	5.97e-16
8	2.56e-13	5.66e-16	2.53e-13	5.72e-16
12	4.05e-11	8.09e-16	6.11e-11	7.79e-16
16	3.27e-09	7.44e-16	7.49e-09	1.00e-15
20	5.85e-07	1.15e-15	9.68e-07	7.24e-16
24	8.23e-05	1.09e-15	2.85e-04	7.85e-16
28	4.54e-03	1.09e-15	2.80e-02	8.00e-16
32	1.88e-03	9.34e-16	9.08e-03	1.14e-15
100	3.16e-02	2.20e-15	1.05e-02	2.20e-15

Error estimates

Lemma (Chen, S. & Wang '16). Let $\alpha \in (0,1)$. Then, for any $v \in \mathcal{B}^{s}_{-\alpha,\alpha}(I)$,

$$\|\pi_{N}^{(-\alpha,\alpha)}v-v\|_{\omega^{(-\alpha,\alpha)}} \lesssim N^{-(\alpha+s)}\|_{0}D_{t}^{\alpha+s}v\|_{\omega^{(s,s)}}.$$

and

$$\|_0 D_t^{\alpha}(\pi_N^{(-\alpha,\alpha)} v - v)\|_I \lesssim N^{-s} \|_0 D_t^{\alpha+s} v\|_{\omega^{(s,s)}}.$$

Theorem. If $u \in B^{\alpha}(\mathbb{D}) := H^{s}(I; L^{2}(\Omega)) \cap L^{2}(I; H_{\mathcal{L}}(\Omega))$ and ${}_{0}D_{t}^{\alpha+s}u \in L^{2}(\mathbb{D})$, we have

 $\|u-u_L\|_{B^{\alpha}(\mathbb{D})} \lesssim N^{-s} \|_0 D_t^{\alpha+s} u\|_{L^2_{\omega^{(s,s)}}(\mathbb{D})} + \inf_{v_L(t,\cdot) \in V_h} \|u-v_L\|_{H^{\alpha}(I,H_{\mathcal{L}}(\Omega))}.$

Unfortunately, u has weak singularity at t = 0. The approximation space in time only includes the strongest singular term t^{α} , so the achievable convergence rate in N is limited.

Figure: Error in B^{α} against various *N*. Left: with the exact solution $u(x, y, t) = \sin(\pi x) \sin(\pi y) \cdot \sin(\pi t^{\alpha})$ in $(-1, 1)^2$; Right: with $f(x, y, t) = (x^2 + y^2 - 1)$ in a disk.

We know from the Mittag-Leffler formula that the solution of fractional ODEs takes the form:

$$u=\sum_{i,j}^{\infty}\gamma_{ij}^{\alpha}t^{i+j\alpha}.$$

The GJFs only include the singular terms $t^{i+\alpha}$. In order to improve the convergence, we need to enrich the approximation space in time by other leading singular functions in the form of $\{t^{i+j\alpha}\}$:

 $\mathcal{F}_{N}^{(k,\alpha)}(I) = \mathcal{F}_{N}^{(\alpha)}(I) \oplus \{ \text{first k terms of } t^{i+j\alpha} \text{ not in } \mathcal{F}_{N}^{(\alpha)}(I) \}.$

Then, the enriched Petrov-Galerkin method is: Find $u_L^k \in V_h \otimes \mathcal{F}_N^{(k,\alpha)}$, such that

 $\mathcal{A}(u_L^k, v_L) = (g, v_L)_{\mathbb{D}}, \quad \forall v_L \in V_h \otimes \mathcal{P}_{N+k}.$

- Using a modified Gram-Schmidt process, one can construct an orthogonal set of *k* enriched basis functions.
- The linear system can still be efficiently solved by using the QZ decomposition.
- The convergence rate can be increased to arbitrary order as we increase *k*.

Improved error estimates for the enriched spectral method

Theorem. Let $\bar{k} + \nu$ ($0 < \nu < 1$) be the first $i + j\alpha$ not included in the enriched space.

• For
$$\max\{0, \alpha - \frac{1}{2}\} < \nu < \alpha$$
,

$$\|u-u_L^k\|_{B^{\alpha}(\mathbb{D})} \lesssim N^{-\overline{k}} + \inf_{v_L(t,\cdot)\in V_h} \|u-v_L\|_{H^{\alpha}(I,H_{\mathcal{L}}(\Omega))}.$$

• For
$$\alpha < \nu < \min\{1, \alpha + \frac{1}{2}\}$$
,

$$\|u-u_L^k\|_{B^{\alpha}(\mathbb{D})} \lesssim N^{-1-\overline{k}} + \inf_{v_L(t,\cdot)\in V_h} \|u-v_L\|_{H^{\alpha}(I,H_{\mathcal{L}}(\Omega))}.$$

• For
$$\alpha + \frac{1}{2} < \nu < 1$$
,
 $\|u - u_L^k\|_{B^{\alpha}(\mathbb{D})} \lesssim N^{-2-\overline{k}} + \inf_{v_L(t,\cdot) \in V_h} \|u - v_L\|_{H^{\alpha}(I,H_{\mathcal{L}}(\Omega))}.$

Figure: Errors in B^{α} against various N and α .

Extension to nonlinear problems

Consider now the nonlinear fractional PDEs:

 ${}_0D_t^{\alpha}v(x,t)+\mathcal{L}v(x,t)+\mathcal{N}(v(x,t))=g; \qquad v(x,0)=0.$

Let us denote

 $\mathcal{A}(u,v) := ({}_{0}D_{t}^{\alpha}u, v)_{\mathbb{D}} + (\mathcal{L}^{\frac{1}{2}}u, \mathcal{L}^{\frac{1}{2}}v)_{\mathbb{D}} + (\mathcal{N}(u), v)_{\mathbb{D}}.$ Petrov-Galerkin Approximation: Find $u_{L} \in V_{h} \otimes \mathcal{F}_{N}^{(\alpha)}$ s.t.

 $\mathcal{A}(u_L, v_L) = (g, v_L)_{\mathbb{D}}, \quad \forall v_L \in V_h \otimes \mathcal{P}_N.$

- The above nonlinear system can be solved by using Newton iteration which requires solving linear fractional PDEs with variable coefficients.
- We can use, as a preconditioner, the fast solver for linear fractional PDEs with constant coefficients. So the overall algorithm is still very efficient.

Time fractional Allen-Cahn equation

 ${}_{0}^{C}D_{t}^{\alpha}u(x,t) - \epsilon^{2}\Delta u(x,t) + f(u(x,t)) = 0, \qquad \forall (x,t) \in \Omega,$ with the initial condition $u_{0}(x) = \begin{cases} 1, & 0 \le x \le 1, \\ -1, & -1 \le x < 0. \end{cases}$

Figure: Solution profile. Left: $\alpha = 0.7$, $\epsilon = 0.1$ at various *t*; Right: $\epsilon = 0.1$ at T = 1 with various α .

Part I. We developed efficient numerical methods for fractional Laplacian in bounded domains:

- we adopt the Caffarelli-Silverstre extension and developed efficient and accurate Laguerre-spectral method to deal with the singularity in the extended direction:
 - The method is not intrusive and can be applied to any discretization in space.
 - The method is much more efficient and easy to implement than using a finite-element approach in the extended direction.
 - The approach presented here can be extended to more general fractional elliptic equations.

Part II. We developed efficient space-time Petrov-Galerkin method for time fractional PDEs using the following two new approaches:

- We use the QZ decomposition which leads to accurate decompositions for non-symmetric matrices.
- We enrich the GJF approximation space by adding leading singular terms to resolve the weak singularity at t = 0.

Our Petrov-Galerkin method enjoys the following advantages:

- Accuracy: the enriched spectral method with a small number of modes can effectively resolve the weak singularity at t = 0.
- Efficiency: the total cost is dominated by a small number of elliptic solvers in space variables.
- Flexibility: one can use any Galerkin type discretization in space.

Some future directions:

- How to effectively deal with fractional Laplacian in integral form with the Caffarelli-Silvestre extention?
- The space-time Petrov-Galerkin method is only effective for simulation of short-times or smooth evolutions. How to develop an efficient space-time method with a spectral-element discretization in-time?

Thank you!